Kamis, 29 November 2012

SIFAT KOLIGATIF LARUTAN

Sifat  koligatif  larutan  adalah  sifat  larutan  yang  tidak tergantung pada macamnya zat terlarut tetapi semata-mata hanya ditentukan oleh banyaknya zat terlarut (konsentrasi zat terlarut).
Apabila suatu pelarut ditambah dengan sedikit zat terlarut (Gambar 6.2), maka akan didapat suatu larutan yang mengalami:
  1. Penurunan tekanan uap jenuh
  2. Kenaikan titik didih
  3. Penurunan titik beku
  4. Tekanan osmosis
Banyaknya partikel dalam larutan ditentukan oleh konsentrasi larutan dan sifat Larutan itu sendiri. Jumlah partikel dalam larutan non elektrolit tidak sama dengan jumlah partikel dalam larutan elektrolit, walaupun konsentrasi keduanya sama. Hal ini dikarenakan larutan elektrolit terurai menjadi ion-ionnya, sedangkan larutan non elektrolit tidak terurai menjadi ion-ion. Dengan demikian sifat koligatif larutan dibedakan atas sifat koligatif larutan non elektrolit dan sifat koligatif larutan elektrolit.

Penurunan Tekanan Uap Jenuh

Pada  setiap  suhu,  zat  cair  selalu  mempunyai  tekanan tertentu. Tekanan ini adalah tekanan uap jenuhnya pada suhu tertentu. Penambahan suatu zat ke dalam zat cair menyebabkan penurunan tekanan uapnya. Hal ini disebabkan karena zat terlarut itu mengurangi bagian atau fraksi dari pelarut, sehingga kecepatan penguapan berkurang.
Gambaran penurunan tekanan uap
Gambaran penurunan tekanan uap
Menurut Roult :
p = po . XB
keterangan:
p     : tekanan uap jenuh larutan
po  : tekanan uap jenuh pelarut murni
XB  : fraksi mol pelarut
Karena XA + XB = 1, maka persamaan di atas dapat diperluas menjadi :
P = Po (1 – XA)
P = Po – Po . XA
Po – P = Po . XA
Sehingga :
ΔP = po . XA
keterangan:
ΔP   : penuruman tekanan uap jenuh pelarut
po    : tekanan uap pelarut murni
XA   : fraksi mol zat terlarut
Contoh :
Hitunglah penurunan tekanan uap jenuh air, bila 45 gram glukosa (Mr = 180) dilarutkan dalam 90 gram air ! Diketahui tekanan uap jenuh air murni pada 20oC adalah 18 mmHg.
rm

Kenaikan Titik Didih

Adanya penurunan tekanan uap jenuh mengakibatkan titik didih larutan lebih tinggi dari titik didih pelarut murni. Untuk larutan non elektrolit kenaikan titik didih dinyatakan dengan:
ΔTb = m . Kb
keterangan:
ΔTb = kenaikan titik didih (oC)
m      = molalitas larutan
Kb = tetapan kenaikan titik didihmolal
rm19
(W menyatakan massa zat terlarut), maka kenaikan titik didih larutan dapat dinayatakan sebagai:
rm210
Apabila pelarutnya air dan tekanan udara 1 atm, maka titik didih larutan dinyatakan sebagai :
Tb = (100 + ΔTb) oC

Penurunan Titik Beku

Untuk penurunan titik beku persamaannya dinyatakan sebagai:
rm37
ΔTf = penurunan titik beku
m     = molalitas larutan
Kf     = tetapan penurunan titik beku molal
W     = massa zat terlarut
Mr   = massa molekul relatif zat terlarut
p      = massa pelarut
Apabila pelarutnya air dan tekanan udara 1 atm, maka titik beku larutannya dinyatakan sebagai:
Tf = (O – ΔTf)oC

Tekanan Osmosis

Tekanan osmosis adalah tekanan yang diberikan pada larutan yang dapat menghentikan perpindahan molekul-molekul pelarut ke dalam larutan melalui membran semi permeabel (proses osmosis) seperti ditunjukkan pada.
Menurut Van’t hoff tekanan osmosis mengikuti hukum gas ideal:
PV = nRT
Karena tekanan osmosis = Π , maka :
rm48
π° = tekanan osmosis (atmosfir)
C   = konsentrasi larutan (M)
R   = tetapan gas universal.  = 0,082 L.atm/mol K
T   = suhu mutlak (K)
Tekanan osmosis
Tekanan osmosis
  • Larutan yang mempunyai tekanan osmosis lebih rendah dari yang lain disebut larutan Hipotonis.
  • Larutan yang mempunyai tekanan lebih tinggi dari yang lain disebut larutan Hipertonis.
  • Larutan yang mempunyai tekanan osmosis sama disebut Isotonis.
Seperti yang telah dijelaskan sebelumnya bahwa larutan elektrolit  di  dalam  pelarutnya  mempunyai  kemampuan  untuk mengion. Hal ini mengakibatkan larutan elektrolit mempunyai jumlah partikel yang lebih banyak daripada larutan non elektrolit pada konsentrasi yang sama.
Contoh :
Larutan 0.5 molal glukosa dibandingkan dengan iarutan 0.5 molal garam dapur.
  • Untuk larutan glukosa dalam air jumlah partikel (konsentrasinya) tetap, yaitu 0.5 molal.
  • Untuk larutan garam dapur: NaCl(aq) → Na+(aq) + Cl-(aq) karena terurai menjadi 2 ion, maka konsentrasi partikelnya menjadi 2 kali semula = 1.0 molal.
Yang menjadi ukuran langsung dari keadaan (kemampuannya) untuk mengion adalah derajat ionisasi. Besarnya derajat ionisasi ini dinyatakan sebagai :
α° = jumlah mol zat yang terionisasi/jumlah mol zat mula-mula
Untuk larutan elektrolit kuat, harga derajat ionisasinya mendekati 1, sedangkan untuk elektrolit lemah, harganya berada di antara 0 dan 1 (0 < α < 1). Atas dasar kemampuan ini, maka larutan elektrolit mempunyai pengembangan di dalam perumusan sifat koligatifnya.
  • Untuk Kenaikan Titik Didih dinyatakan sebagai :
rm54
n menyatakan jumlah ion dari larutan elektrolitnya.
  • Untuk Penurunan Titik Beku dinyatakan sebagai :
rm64
  • Untuk Tekanan Osmosis dinyatakan sebagai :
π°  = C R T [1+ α(n-1)]
Contoh :
Hitunglah kenaikan titik didih dan penurunan titik beku dari larutan5.85 gram garam dapur (Mr = 58.5) dalam 250 gram air ! (untuk air, Kb= 0.52 dan Kf= 1.86)
Jawab :
Larutan garam dapur,
rm73
Catatan:
Jika di dalam soal tidak diberi keterangan mengenai harga derajat ionisasi, tetapi kita mengetahui bahwa larutannya tergolong elektrolit kuat, maka harga derajat ionisasinya dianggap 1.

Senin, 26 November 2012

LARUTAN ASAM DAN BASA

Titrasi Asam Basa (Penambahan Asam dan Basa)- Ada beberapa macam titrasi bergantung pada jenis reaksinya, seperti titrasi asam basa, titrasi permanganometri, titrasi argentometri, dan titrasi iodometri. Pada topik berikut akan diuraikan mengenai titrasi asam basa. Titrasi adalah suatu metode untuk menentukan konsentrasi zat di dalam larutan. Titrasi dilakukan dengan cara mereaksikan larutan tersebut dengan larutan yang sudah diketahui konsentrasinya. Reaksi dilakukan secara bertahap (tetes demi tetes) hingga tepat mencapai titik stoikiometri atau titik setara.
1. Indikator Asam Basa
Dalam titrasi asam basa, zat-zat yang bereaksi umumnya tidak berwarna sehingga Anda tidak tahu kapan titik stoikiometri tercapai. Misalnya, larutan HCl dan larutan NaOH, keduanya tidak berwarna dan setelah bereaksi, larutan NaCl yang terbentuk juga tidak berwarna. Untuk menandai bahwa titik setara pada titrasi telah dicapai digunakan indikator atau penunjuk. Indikator ini harus berubah warna pada saat titik setara tercapai. Apakah indikator asam basa itu? Indikator asam basa adalah petunjuk tentang perubahan pH dari suatu larutan asam atau basa. Indikator bekerja berdasarkan perubahan warna indikator pada rentang pH tertentu. Anda tentu mengenal kertas lakmus, yaitu salah satu indikator asam basa. Lakmus merah berubah warna menjadi biru jika dicelupkan ke dalam larutan basa. Lakmus biru berubah menjadi merah jika dicelupkan ke dalam larutan asam. Terdapat beberapa indikator yang memiliki trayek perubahan warna cukup akurat akibat pH larutan berubah, seperti indikator metil jingga, metil merah, fenolftalein, alizarin kuning, dan brom timol biru. Untuk mengetahui pada pH berapa suatu indikator berubah warna (trayek pH indikator).
Indikator asam basa umumnya berupa molekul organik yang bersifat asam lemah dengan rumus HIn. Indikator memberikan warna tertentu ketika ion H+ dari larutan asam terikat pada molekul HIn dan berbeda warna ketika ion H+ dilepaskan dari molekul HIn menjadi In–. Salah satu indikator asam basa adalah fenolftalein (PP), indikator ini banyak digunakan karena harganya murah. Indikator PP tidak berwarna dalam bentuk HIn (asam) dan berwarna merah jambu dalam bentuk In– (basa). Perhatikan struktur fenolftalein berikut.
struktur fenolftalein2
struktur fenolftalein
Untuk mengetahui bagaimana indikator bekerja, perhatikan reaksi kesetimbangan berikut yang menyatakan indikator HIn sebagai asam lemah dengan Ka = 1,0 × 10–8.
HIn(aq) ⇄ H+(aq) + In(aq)
Tiadak berwarna Merah jambu
asam lemah dengan Ka
Jika ke dalam larutan ditetesi indikator pada pH = 3 atau [H+]= 1,0 × 10–3 M, dihasilkan perbandingan:
perbandingan ka h
Perbandingan tersebut menunjukkan bahwa struktur yang lebih dominan adalah bentuk HIn (tidak berwarna). Jika ion OH (basa) ditambahkan ke dalam larutan, [H+] berkurang dan posisi kesetimbangan bergeser ke arah pembentukan In. Ini berarti mengubah HIn menjadi In. Jika ion OH ditambahkan terus, bentuk In dominan dan larutan berwarna merah jambu.
2. Titrasi Asam Basa
Dalam melakukan titrasi, larutan yang dititrasi, disebut titrat dimasukkan ke dalam labu erlenmeyer (biasanya larutan asam), sedangkan larutan pentitrasi, disebut titran (biasanya larutan basa) dimasukkan ke dalam buret. Titran dituangkan dari buret tetes demi tetes ke dalam larutan titrat sampai titik stoikiometri tercapai (lihat Gambar 7.6).
Set alat untuk titrasi asam basa
Gambar 7.6 Set alat untuk titrasi asam basa
Oleh karena kemampuan mata kita terbatas dalam mengamati warna larutan maka penggunaan indikator dalam titrasi asam basa selalu mengandung risiko kesalahan. Jika indikator PP digunakan pada titrasi HClNaOH maka pada saat titik setara tercapai (pH = 7) indikator PP belum berubah warna dan akan berubah warna ketika pH 8. Jadi, ada kesalahan titrasi yang tidak dapat dihindari sehingga pada waktu Anda menghentikan titrasi (titik akhir titrasi) ditandai dengan warna larutan agak merah jambu, adapun titik setara sudah dilampaui. Dengan kata lain, titik akhir titrasi tidak sama dengan titik stoikiometri. Jika dalam titrasi HCl–NaOH menggunakan indikator brom timol biru (BTB), dimana trayek pH indikator ini adalah 6 (kuning) dan 8 (biru) maka pada saat titik setara tercapai (pH =7) warna larutan campuran menjadi hijau. Kekurangan yang utama dari indikator BTB adalah mengamati warna hijau tepat pada pH = 7 sangat sukar, mungkin lebih atau kurang dari 7. Titrasi asam basa pada dasarnya adalah reaksi penetralan asam oleh basa atau sebaliknya. Persamaan ion bersihnya:
H+(aq) + OH(aq) → H2O(l)
Ketika campuran berubah warna, itu menunjukkan ion H+ dalam larutan HCl telah dinetralkan seluruhnya oleh ion OH– dari NaOH. Jika larutan NaOH ditambahkan terus, dalam campuran akan kelebihan ion OH– (ditunjukkan oleh warna larutan merah jambu). Berikut akan dibahas cara perhitungan titrasi asam kuat oleh basa kuat, misalnya 50 mL larutan HCl 0,1 M oleh NaOH 0,1 M. Kemudian, menghitung pH larutan pada titik-titik tertentu selama titrasi.
a. Sebelum NaOH Ditambahkan
HCl adalah asam kuat dan di dalam air terionisasi sempurna sehingga larutan mengandung spesi utama: H+, Cl, dan H2O. Nilai pH ditentukan oleh jumlah H+ dari HCl. Karena konsentrasi awal HCl 0,1 M, larutan HCl tersebut mengandung 0,1 M H+ dengan nilai pH = 1.
b. Penambahan 10 mL NaOH 0,1 M
Dengan penambahan NaOH, berarti menetralkan ion H+ oleh ion OH sehingga konsentrasi ion H+ berkurang. Dalam campuran reaksi, sebanyak (10 mL × 0,1 M = 1 mmol) OHyang ditambahkan bereaksi dengan 1 mmol H+ membentuk H2O.
Tabel 7.3 Pengaruh Penambahan OH terhadap Konsentrasi H+
Konsentrasi (M) H (aq) Penambahan OH–(aq)
Sebelum reaksi 50 mL ×0,1 M = 5 mmol 10 mL × 0,1 M = 1 mmol
Setelah reaksi (5 – 1) mmol = 4 mmol (1 – 1) mmol = 0
Setelah terjadi reaksi, larutan mengandung: H+, Cl, Na+, dan H2O. Nilai pH ditentukan oleh [H+] sisa:
H+
pH = –log (0,07) = 1,18.
c. Penambahan 10 mL NaOH 0,1 M Berikutnya
Pada penambahan 10 mL NaOH 0,1 M berikutnya akan terjadi perubahan konsentrasi pada H+. Perhatikan tabel berikut.
Tabel 7.4 Pengaruh Penambahan OH– Berikutnya terhadap Konsentrasi H+
Konsentrasi (M) H (aq) Penambahan OH–(aq)
Sebelum reaksi 4 mmol (sisa sebelumnya) 10 mL × 0,1 M = 1 mmol
Setelah reaksi (4 – 1) mmol = 3 mmol (1 – 1) mmol = 0
Setelah terjadi reaksi, nilai pH ditentukan oleh [H+] sisa:
[H+] sisa
pH = –log (0,04) = 1,37.
d. Penambahan NaOH 0,1 M Sampai 50 mL
Pada titik ini, jumlah NaOH yang ditambahkan adalah 50 mL × 0,1 M = 5 mmol dan jumlah HCl total adalah 50 mL × 0,1 M = 5 mmol. Jadi, pada titik ini ion H+ tepat dinetralkan oleh ion OH. Titik dimana terjadi netralisasi secara tepat dinamakan titik stoikiometri atau titik ekui alen. Pada titik ini, spesi utama yang terdapat dalam larutan adalah Na+, Cl, dan H2O. Karena Na+ dan Cl tidak memiliki sifat asam atau basa, larutan bersifat netral atau memiliki nilai pH = 7.
e. Penambahan NaOH 0,1 M Berlebih (sampai 75 mL)
Penambahan NaOH 0,1 M berlebih menyebabkan pH pada larutan menjadi basa karena lebih banyak konsentrasi OH dibandingkan H+. Perhatikan tabel berikut.
Tabel 7.5 Pengaruh Penambahan OH Berlebih terhadap Konsentrasi Larutan
Konsentrasi (M) H (aq) Penambahan OH–(aq)
Sebelum reaksi 5 mmol (jumlah awal) 75 mL × 0,1 M = 7,5 mmol
Setelah reaksi 0 (7,5 – 5) mmol = 2,5 mmol
Setelah bereaksi, ion OH yang ditambahkan berlebih sehingga dapat menentukan pH larutan.
ion OH–
pOH = –log (0,02) = 1,7
pH larutan = 14 – pOH = 12,3
Tabel dan kurva penambahan konsentrasi NaOH terhadap pH larutan
Gambar 7.12 Tabel dan kurva penambahan konsentrasi NaOH terhadap pH larutan.
Hasil perhitungan selanjutnya disusun ke dalam bentuk kurva yang menyatakan penambahan konsentrasi NaOH terhadap pH larutan seperti ditunjukkan pada Gambar 7.12. Pada mulanya perubahan pH sangat lamban, tetapi ketika mendekati titik ekuivalen perubahannya drastis. Gejala ini dapat dijelaskan sebagai berikut. Pada awal titrasi, terdapat sejumlah besar H+ dalam larutan. Pada penambahan sedikit ion OH, pH berubah sedikit, tetapi mendekati titik ekuivalen, konsentrasi H+relatif sedikit sehingga penambahan sejumlah kecil OH dapat mengubah pH yang sangat besar. Kurva pH titrasi asam-basa memiliki ciri:
(1) Bentuk kurva selalu berupa sigmoid
(2) Pada titik setara, pH sama dengan 7.
(3) Ketika mendekati titik ekuivalen, bentuk kurva tajam.
Titik akhir titrasi dapat sama atau berbeda dengan titik ekuivalen bergantung pada indikator yang digunakan. Jika indikator yang dipakai memiliki trayek pH 6–8 (indikator BTB), mungkin titik akhir titrasi sama dengan titik ekuivalen. Titik akhir titrasi adalah saat titrasi dihentikan ketika campuran tepat berubah warna. Pada umumnya, pH pada titik akhir titrasi lebih besar dari pH titik ekuivalen sebab pada saat titik ekuivalen tercapai, larutan belum berubah warna apabila indikator yang digunakan adalah fenolftalein.
Contoh Menghitung pH Titrasi Asam Basa
Sebanyak 25 mL larutan HCl 0,1 M dititrasi dengan NaOH 0,1 M. Hitung pH larutan:
a. sebelum penambahan NaOH
b. setelah penambahan NaOH 25 mL
Jawab:
a. Nilai pH ditentukan oleh jumlah H+ dari HCl. Konsentrasi awal HCl= 0,1 M maka larutan akan mengandung 0,1 M H+.
[H+] = 0,1 M dan pH = 1.
b. Jumlah NaOH yang ditambahkan adalah
25 mL × 0,1 M = 2,5 mmol.
Jumlah asam klorida mula-mula adalah
25 mL × 0,1 M = 2,5 mmol.
Ion OH– yang ditambahkan bereaksi tepat dengan H+, saat [H+] = [OH]. Pada titik ini dinamakan titik ekuivalen titrasi. Pada titik ekuivalen, konsentrasi H+ yang terdapat dalam larutan hanya berasal dari ionisasi air. Jadi, pH = 7.
Ulasan
1. Stoikiometri larutan melibatkan konsep mol dalam menentukan konsentrasi zat-zat di dalam larutan.
2. Reaksi asam dan basa merupakan reaksi penetralan ion H+ oleh OH–. Reaksi asam basa juga dinamakan reaksi penggaraman.
3. Indikator asam basa adalah asam-asam lemah organik yang dapat berubah warna pada rentang pH tertentu.
4. Rentang pH pada saat indikator berubah warna dinamakan trayek pH indikator.
5. Titrasi asam basa adalah suatu teknik untuk menentukan konsentrasi asam atau basa dengan cara titrasi.
6. Titik setara atau titik stoikiometri adalah titik pada saat titrasi, asam dan basa tepat ternetralkan. Titik akhir titrasi dapat sama atau berbeda dengan titik setara.

Sel Elektrokimia kelas XII

Uji Elektrolitas Larutan

Rabu, 21 November 2012

redoks

Redoks (singkatan dari reaksi reduksi/oksidasi) adalah istilah yang menjelaskan berubahnya bilangan oksidasi (keadaan oksidasi) atom-atom dalam sebuah reaksi kimia.
Hal ini dapat berupa proses redoks yang sederhana seperti oksidasi karbon yang menghasilkan karbon dioksida, atau reduksi karbon oleh hidrogen menghasilkan metana(CH4), ataupun ia dapat berupa proses yang kompleks seperti oksidasi gula pada tubuh manusia melalui rentetan transfer elektron yang rumit.
Istilah redoks berasal dari dua konsep, yaitu reduksi dan oksidasi. Ia dapat dijelaskan dengan mudah sebagai berikut:
Walaupun cukup tepat untuk digunakan dalam berbagai tujuan, penjelasan di atas tidaklah persis benar. Oksidasi dan reduksi tepatnya merujuk pada perubahan bilangan oksidasi karena transfer elektron yang sebenarnya tidak akan selalu terjadi. Sehingga oksidasi lebih baik didefinisikan sebagai peningkatan bilangan oksidasi, dan reduksi sebagai penurunan bilangan oksidasi. Dalam prakteknya, transfer elektron akan selalu mengubah bilangan oksidasi, namun terdapat banyak reaksi yang diklasifikasikan sebagai "redoks" walaupun tidak ada transfer elektron dalam reaksi tersebut (misalnya yang melibatkan ikatan kovalen).